The term hipot is usually used as an abbreviation for high potential. It is a term that is used to refer to a certain class of electrical safety testing instruments referred to as a hipot tester. These instruments are used in the verification of the electrical insulation in finished cables, appliances, and other wired assemblies. Such assemblies include electric motors, transformers, and printed circuit boards just to mention a few.
Upon the manufacture or assembly of an appliance or product, it is usual for some degree of electrical leakage to occur. However, the leakage is usually very low and is brought about by internal capacitance and voltages inside the appliance. It is normal for such leakage to occur and it needs to be expected of every device. There exist a number of instances where the leakage, for some reason, may be excess.
Several causes lead to the excessive current leakage, including flaws in design and break down of internal insulation. Anyone that gets exposed to such faulty devices may be electrocuted from the excessive current leakage. To protect the operator from shock, it is important to conduct a hipot test for verification purposes to ensure that the product has sufficient insulation.
Dielectric Withstanding Voltage, DWV, is another term used in reference to the hipot test. At the time of the test, a high voltage is applied between the conductors that carry current in the product and its metallic shielding. Upon completion, there will exist a resultant current that makes its way through the insulator material. The term used for this current is leakage current and is tested using a high potential tester.
This testing process makes one major assumption. The assumption is that if the insulation of the device is not broken by the deliberate application of excess voltage, then it should be safe for normal operation. The device should be able to withstand application of normal voltage, which is applied during normal use. The name Dielectric Withstanding Voltage comes from this assumption.
The objective during testing is to stress the insulation in the product. However, apart from inducing stress on insulation, the test detects any workmanship defects that may be present. The workmanship monitoring focuses on the tiny gap spaces occurring between the earth ground and conductors that carry current in the device. In normal working environment, these small gaps can be closed by dirt, humidity, vibration, shock, or contaminants.
The flow of current is allowed when the small gaps between earth ground and current-carrying conductors in electrical devices. This may cause a major electrical risk that must be rectified during manufacture before the product is made available on the market. Only DWV can be used for defect detection. Other methods may not be efficient like the DWV even though they can attempt to identify these defects.
Manufacturers use high potential testers to do the verification of electrical insulation. Often, this simple electric device comprises of a switching matrix, current meter, and a source for the high voltage. All the points located on the cable are connected to the high-voltage source and the current meter through the matrix. Including a display and a microcontroller helps to automate the testing process.
Upon the manufacture or assembly of an appliance or product, it is usual for some degree of electrical leakage to occur. However, the leakage is usually very low and is brought about by internal capacitance and voltages inside the appliance. It is normal for such leakage to occur and it needs to be expected of every device. There exist a number of instances where the leakage, for some reason, may be excess.
Several causes lead to the excessive current leakage, including flaws in design and break down of internal insulation. Anyone that gets exposed to such faulty devices may be electrocuted from the excessive current leakage. To protect the operator from shock, it is important to conduct a hipot test for verification purposes to ensure that the product has sufficient insulation.
Dielectric Withstanding Voltage, DWV, is another term used in reference to the hipot test. At the time of the test, a high voltage is applied between the conductors that carry current in the product and its metallic shielding. Upon completion, there will exist a resultant current that makes its way through the insulator material. The term used for this current is leakage current and is tested using a high potential tester.
This testing process makes one major assumption. The assumption is that if the insulation of the device is not broken by the deliberate application of excess voltage, then it should be safe for normal operation. The device should be able to withstand application of normal voltage, which is applied during normal use. The name Dielectric Withstanding Voltage comes from this assumption.
The objective during testing is to stress the insulation in the product. However, apart from inducing stress on insulation, the test detects any workmanship defects that may be present. The workmanship monitoring focuses on the tiny gap spaces occurring between the earth ground and conductors that carry current in the device. In normal working environment, these small gaps can be closed by dirt, humidity, vibration, shock, or contaminants.
The flow of current is allowed when the small gaps between earth ground and current-carrying conductors in electrical devices. This may cause a major electrical risk that must be rectified during manufacture before the product is made available on the market. Only DWV can be used for defect detection. Other methods may not be efficient like the DWV even though they can attempt to identify these defects.
Manufacturers use high potential testers to do the verification of electrical insulation. Often, this simple electric device comprises of a switching matrix, current meter, and a source for the high voltage. All the points located on the cable are connected to the high-voltage source and the current meter through the matrix. Including a display and a microcontroller helps to automate the testing process.
About the Author:
We have all the detailed specifications on hipot tester the best on our related homepage. Simply use this link to reach the main website at http://www.rossengineeringcorp.com/products/measurement/ac-dc-digital-hipots.html.
No comments:
Post a Comment